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Abstract. A theory of lhe dipolar Frenkel excitonic insulator (U) phase developed in an 
earlier paper is extended to spatially disordered systems. Using the Hamee appmximation 
sludied previously. we derive, for agiven atomic centre-of-mass contiguration, aself-wnsistency 
equation for the atomic dipole moments. a non-zero solution m which indicates an er phase. 
We obtnin as a special case the microscopic Yvon-KirLwmd equations of classical dielectric 
theov. For lhe experimemally relevant case of an impurity at infinite dilution in a solvent or 
disordered matrix, we derive an explicit expression for the impurity dipole moment To lake 
inlo account the ensemble of atomic configurations a mean field approximation is developed, 
numerical results for which, wilhin the clew of linear approximations of classical liquid slate 
theory, will be given in a subsequent paper. We also examine the dynamic response of the 
impurity system to an oscillating elecnic field. We locate the lowest exciled slate of the system 
in both Ihe normal insulating and dipolar el phases. and show lhat it is degenemle with the 
p u n d  slale at the EI m i t i o n ,  thus making conlact with exciton theories of the €1 phase. 

1. Introduction 

Over the past decade, there has been much interest in the possibility of observing an excitonic 
insulator (El) phase arising from the condensation of Frenkel excitons. This interest has 
been motivated by a number of unusual experimental results [ 1-51. which may indicate 
the formation of a Frenkel EI phase. Furthermore, computer simulations of experimentally 
important systems [6,7] have yielded examples of a dipolar atomic state, characteristic of 
the Frenkel EI phase. A summary of these results, together with an account of the theories 
put forward to date for describing the Frenkel EI phase [Z, 8-18]. can be found in our earlier 
paper 1191 (hereafter referred to as I). 

Theories of the dipolar Frenkel €1 phase can be classified broadly into two approaches. 
The first [GI 1,13,181 is similar in spirit to the earlier theories of the Mott-Wannier E1 phase 
[2&251. A transition from the normal insulating phase to an El phase is deemed to occur 
when excited states of the system mix into the ground state, which in turn occurs when the 
ground and lowest excited states become degenerate. For a Frenkel EI phase, the relevant 
excited states are the band of Frenkel excitons, and the transition occurs when the lower edge 
of this band becomes degenerate with the ground state. In the second approach [Z, 12,14- 
171, the dipolar nature of the constituent atoms in the Frenkel El phase is emphasized. The 
central question is whether or not the interaction between the putative dipole moment of 
an atom and its polarized surroundings is sufficient to stabilize the formation of an atomic 
dipole, and thus yield a Frenkel EI phase. 
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In I, we gave a critical discussion of two alternative analyses of a model system, which 
exemplify the two general approaches to the Frenkel El phase described above. The first 
analysis, which we termed ‘pairing theory’, yields the Frenkel exciton band of the model 
system, the broadening of which can be followed as a function of system density, and the 
transition to the E1 phase predicted as described above. We showed in I that to get a reliable 
estimate of the transition density, one must include the so-called ‘double excitation’ terms 
in the model Hamiltonian. With this, solution of the resulting problem is straightfonvard 
for a crystalline system, but difficult for any spatially disordered system. 

The majority of candidates for the realization of a Frenkel EI phase are, however, 
spatially disordered systems-liquids or amorphous solids [ 1-3,5-7]-since in these the 
excitons are commonly tightly bound, and thus of Frenkel type. In crystalline systems, the 
excitons are more usually of Mom-Wannier type. The pairing theory, though allowing a 
rigorous analysis, is therefore of limited usefulness, since it cannot deal reliably with the 
disordered systems which are of primary interest. Furthermore, although one can use the 
pairing theory to locate the transition to the Frenkel El phase, it cannot be used to describe 
the El phase itself. 

The second analysis examined in I is based on a Hartree decoupling of the electron 
correlation terms that give rise to the exciton states. For the assumed basis, diagonalization 
of the Hartree Hamiltonian yields the dipole moment of an atom in terms of the local electric 
field arising from the dipole moments of all other atoms. Evaluation of the dipole moments 
is thus a matter of self-consistency, and only for a high enough system density is there a 
solution possessing non-zero dipole moments. The Hartree approximation yields both the 
transition density, and the atomic dipole moment in the Frenkel E1 phase. 

In I, we found excellent agreement between the results of the H m e  approximation and 
those of the pairing theory, for a crystalline model system. The Hartree approximation thus 
appears to form a reliable approach. It has the two advantages that it allows a description 
of the Frenkel El phase itself, and is applicable to non-crystalline systems. The purpose 
of the present paper is to extend the results of I for the Hamee approximation to spatially 
disordered systems. For a particular configuration of atoms, the formal application of the 
theory of I is straightforward. For a spatially disordered system, however, one must take 
account of the ensemble of possible centre-of-mass configurations, and this consideration 
forms much of the present paper. 

We are also able to throw more light on the connection between the Hartree approach 
and the pairing theory, by an investigation of the excited states of the Hamee Hamiltonian. 
A study of the linear response of the system to an externally applied oscillating electric 
field allows one to locate the excited states, and these may be identified as exciton states 
analogous to those of pairing theory. It follows that the dipolar solutions to the Hartree 
Hamiltonian, when allowed, arise out of an admixture into the ground state of these exciton 
StateS. 

As mentioned above. the Hartree approximation yields the dipole moment of an atom 
in terms of the local electric field arising from the dipole moments of all other atoms. The 
response of each atom to the local field is found to be non-linear, an essential feature for 
the formation of an El phase. Local electric fields in condensed phases can indeed be very 
large [261, and a non-linear response to them is not unlikely. The dipolar Frenkel EI phase 
we wish to describe here is a dramatic consequence of this non-linearity. 

From a technical point of view, however, analysis of this non-linear response is very 
difficult for the model system when taken in its most general form. We therefore specialize 
to a simplified (and relevant) case: an impurity at infinite dilution in a solvent or disordered 
matrix. We suppose that the non-linear response is only significant for the impurity, and 
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all solvent atoms are assumed to respond linearly to the local field. The possibility of a 
Frenkel El phase occurring in impurity systems has been suggested by results from a number 
of experiments and computer simulations [2,3.5-71. 

With this assumption, a Frenkel EI phase is still possible, and again constitutes a new 
(dipolar) ground state in which excited states of the system are mixed into the normal ground 
state. For an impurity system, however, the greatest admixture of the excited state occurs 
on the impurity site itself. Qualitatively, one may consider the transition to an El phase 
as a change in the ground state of the impurity atom mediated by the solvent, which itself 
remains largely unaffected. Thus, the Frenkel EI phase for the impurity system consists of 
a dipolar impurity atom stabilized by interactions with the solvent. 

The outline of the paper is as follows. In section 2.1, we review the model system 
introduced in I, and derive the self-consistency relation for the dipole moments of all atoms, 
which arises from the Hartree Hamiltonian. In section 2.2, we specialize to the impurity 
system, and give an explicit expression for the dipole moment of the impurity atom for 
one atomic configuration. We then discuss the question of averaging over the ensemble 
of atomic configurations. A suitable mean field approximation is developed, the central 
quantity in which is the average reaction field factor, which relates the local field at the 
impurity atom to the putative impurity dipole moment. In section 2.3, we describe the 
calculation of the average reaction field factor within the class of linear approximations of 
classical liquid state theory. 

In section 3, we examine the linear response of the system to an externally applied 
oscillating electric field. From a study of the dynamic polarizability of the impurity atom, 
we locate the lowest excited state of the system in both the normal insulating and Frenkel 
El phases. We show that this state is degenerate with the ground state at the transition, thus 
making contact with exciton-based theories of the E t  transition. Finally, in section 4 we 
summarize the results, and discuss their wider implications. 

2. Solution of Hartree equations 

2.1. Background theory 

The model system of I, which we consider again here, is based on a stationary configuration 
of N atoms (or ‘sites’), with one valence electron per atom. The sole difference is that, 
in contrast to the lattice-based examples of I, we are here interested primarily in spatially 
disordered systems. The valence electrons are described via a tight-binding representation, 
and we choose a restricted basis set consisting of one s-orbital and three degenerate p- 
orbitals (spatially quantized along a common set of axes) per site. We assume all basis 
states to be mutually orthogonal. 

For a given configuration of site centre-of-mass positions, the model Hamiltonian was 
presented as (2.5) of 1. Performing a Hamee decoupling on the terms quartic in the electmnic 
operators, and recasting the Hamiltonian in terms of the quantum mechanical expectation 
value of the site dipole moments [p,). it was shown in I that the Hamiltonian takes the 
following physically appealing form: 

This Hamiltonian forms the starting point for the analysis of the present paper. 
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In (2.1). the operator ch (cis) creates (annihilates) an electron in the basis state lis) 
associated with the s orbital on site i, the operator tip, (cipa) creates (annihilates) an electron 
in the basis state lip,) associated with the a-polarized p orbital on site i, and the sums run 
over all N sites and all three polarizations. The zero-order excitation energy is given by 
AE; = cip - cis. where cis and etp are the zero-order site energies of the s and p-levels of 
site i. The transition dipole moment, defined by 

t 

Miu = (isle@ - &)lipa) (2.2) 

is a vector (assumed to be real) whose only non-zero component is the (Y component, which 
takes the value Mi, and the dipoledipole interaction tensor is given by 

(2.3) 

In (2.2) and (2.3). -e(r - R;) is the dipole moment operator for an electron of charge -e 
at position T ,  Ri is the centre-of-mass position of site i, and I is the identity matrix. The 
local field at site i ,  E,, has been generalized to include a uniform external field, E'"', and 
is given by: 

1Rj-R.l' ' )  ' 

- 3(Rj - R;)(Rj - &) 

IRj-&I5 
T;j = ( 

Finally, the expectation value of the dipole moment on site i is 

pi = - C ~ a ( ( ~ j ~ ~ i p . )  + (c!,cis)) (2.5) 

where (. . .) denotes a quantum average over the trial electronic states of the model system. 
Although the model has been developed for a monovalent species, we mention that the 

Hamiltonian (2.1) may also be used to describe approximately a divalent species, with two 
valence electrons per atom. Assuming that no more than one electron is excited above the 
s level (which is different but consistent with the restricted basis we have used), and that 
the electrons are antiparallel, a simple reinterpretation of Aq in (2.1) is sufficient to model 
the divalent species. 

The right-hand side of (2.1) consists formally of a sum of N atomic Hamiltonians, plus 
a classical term that contributes to the total energy, but not to the quantum mechanics, of 
the system. Each atomic Hamiltonian is of a form corresponding to an isolated four-level 
atom in an electric field, E,. The atoms are not, of course, independent, since the electric 
field, E,, experienced by an atom i arises from dipolar fields due to putative dipoles on all 
atoms j # i (see (2.4)), and thus depends on the expectation value of the dipole moment 
on all other atoms. The diagonalization of Hamiltonian (2.1) is, in fact, a matter of self- 
consistency since the expectation value of the dipole on any atom both helps to determine 
and is determined by the dipoles on all other atoms. 

The solution of this problem amounts to a self-consistent determination of the 
expectation dipole moments of all N sites. If there exists more than one self-consistent 
solution, then the ground-state configuration of dipole moments corresponds to that with 
the lowest energy. One configuration that is always possible is, of course, that with zero 
dipole moment on all sites; but this is not necessarily the lowest-energy solution, as we 
show below. 

The trial Hartree wavefunction is an antisymmetrized product of N atomic wavefunc- 
tions of the form 
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Diagonalization of the atomic Hamiltonian for site i yields the eigenenergies and the 
corresponding eigenvector coefficients, ais and ai&, as functions of E;. The lowest-energy 
solution has an eigenenergy 

W; = !jA~;[l - (1 +c&IE;/*/M~)”*] (2.7) 

and, assuming the average in (2.5) to be dominated by the lowest-energy state, the 
eigenvector coefficients of this state imply 

p, = ai& ( I  + a~lE;12/M~)-”2. (2.8) 

In (2.7) and (2.8) 

ai0 = ~ M : / A E ~  (2.9) 

is the static polarizability of site i (within the chosen basis) when it is isolated from all 
other sites. 

For the particular centre-of-mass configuration under consideration, equations 
(2.8) and (2.4) constitute the required self-consistency equations for the expectation dipole 
moments, (p i } .  FOF the lattice-based system of I, and for the configuration of dipole mo- 
ments assumed therein, (2.8) reduces to (4.1 l) of I. In the present paper, however, where the 
interest is in spatially disordered site configurations, we can make no a priori assumptions 
about the configuration of dipole moments, and solution of the self-consistency problem is 
more involved. 

Equation (2.8) gives the dipole moment on site i arising from the effects of the local 
field E;, and the response to the field is clearly non-linear. As shall shortly become clear, 
this non-linearity is crucial to the realization of a Frenkel EI phase, but first we investigate 
what happens if we neglect the non-linearity. Suppose that the local field is sufficiently 
weak that we need only consider the linear response of the dipole moment to the local field. 
Linearizing (2.8). we find: 

(2.10) 

Equations (2.10), with i = 1 , 2  . . . N, are nothing other than the classical microscopic Yvon- 
Kirkwood equations 127,281 for the dipole moments of a system of non-polar polarizable 
molecules in an external field. As such, they are often used as the starting point for 
microscopic classical dielectric theory. It is clear, however, that in the absence of an 
extemal field the only solution to the Yvon-Kirkwood equations is that with all dipole 
moments zero. Linearization of (2.8). therefore, excludes the possibility of a dipolar E1 
phase. 

The Yvon-Kirkwood equations do, however, provide some information on the possible 
existence of an El phase. We show in section 3 that, in the normal insulating phase, analysis 
of a dynamic version of the Yvon-Kirkwood equations reveals a band of excited states, 
which may be identified as Frenkel excitons [29]. As discussed in section 1 and in detail in 
I, a transition to a Frenkel EI phase occurs when the lowest-energy exciton state becomes 
degenerate with the ground state. One can thus predict, via the dynamic Yvon-Kirkwood 
equations, the transition to an E1 phase, although the €1 phase itself cannot be described. 
Such a criterion was used by Logan and Edwards [ 131, using the results of Chandler and 
co-workers [301 for the band of excited states, to make predictions about the possibility of 
an E1 transition in expanded fluid metals. 
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2.2. Impurity systems 

We thus recover the classical Yvon-Kirkwood equations as one limit of the formal solution 
to the problem posed by the Hartree Hamiltonian (2.1). We have seen, however, that the 
Yvon-Kirkwood equations (2.10) can, at most, predict the point at which the system of 
interest becomes unstable with respect to an €1 phase. To go beyond a stability analysis. 
and to describe the El phase itself, one thus needs to retain the non-linearity embodied in 
(2.8). To solve the full self-consistency problem, in which every site responds non-linearly 
to the local field produced by the remaining N - 1 sites. is clearly a formidable problem for 
spatially disordered systems. We therefore specialize to a particular class of systems that 
allow a major simplification; that of an impurity i at infinite dilution in a liquid solvent or 
disordered matrix. 

We suppose that the polarizability of the solvent atoms, (YO (for convenience, we drop 
the site index), is sufficiently small that we can assume a linear response to the local field. 
We further assume that there is no external field, i.e. Ec* = 0, (in section 3, we will 
reintroduce an oscillatory external field). The dipole moment induced on each solvent atom 
is thus given by an expression of the form of (2.10): 

M D Winn and D E Logan 

p, =a& = c y 0  Tjk. pk j # i. (2.1 1) 
kC#i) 

In contrast, the polarizability of the impurity atom, uio, is taken to be large (ai0 >> uo), and 
we retain (2.8) for the impurity site. In other words, only the impurity responds non-linearly 
to the local field. If a Frenkel 81 phase is realized in this model system, then we expect 
the largest dipole moment to occur on the impurity site. The primary concern is therefore 
whether or not the solvent can stabilize a dipolar atom at the impurity site. As mentioned in 
section 1, this situation is pertinent to several of the experimental candidates for the Frenkel 
EI phase. 

To make progress with (2.8) for the impurity atom, we obtain a closed expression for 
Ei via repeated iteration of (2.11) for the solvent dipole moments. which yields 

Here 

(2.13) 

is the sum of all contracted T-tensor products which begin and end at the impurity site, 
but which do not have the impurity as an intermediate site. A product of n T-tensors is 
associated with n - 1 factors of (YO. For the given configuration of site centre-of-mass 
positions, Q may be interpreted as the reaction field factor, which relates the local field 
felt at the impurity site to the dipole moment at that site. Note that G depends only on 
the,dipoledipole interaction tensor and the solvent polarizability-it is independent of the 
impurity parameters (Y~O and Mi. 

Equations (2.8) and (2.12) yield the following self-consistent equation for the impurity 
dipole moment arising from a given site configuration: 

(2.14) pi=aioG*pi(I +~,2 IO*p i l  2 / M2 i )  -10 . 

Similarly, from equations (2.7) and (2.121, the energy of the impurity state is 

Wi = +A<;[ 1 - (1  + [ Y ~ I G  * piIz/M,?)1/2]. (2.15) 
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Equation (2.14) can be rewritten as an eigenvector-eigenvalue problem: 

(2.16) 

where A is one of the three eigenvalues of 9. Equation (2.16) always possesses the trivial 
solution 

pi = o  w, = o  (2.17) 

i.e. the zeroenergy non-dipolar state of the impurity. If cqoh > 1 ,  however, then there is 
also a dipolar solution 

(2.18) 

(where we have used the second equality of (2.16)). with energy 

w. , - - - i A ~ i ( l  - ~ i o h ) .  (2.19) 

In the dipolar phase, there are also non-zero contributions to the total energy of the system 
from the Hartree eigenvalues of the solvent atoms, and from the classical term of (2.1). 
It can be shown that these contributions amount to (A~i/4)[ff ioA - (orioA)-'] which, when 
added to (2.19), imply that the total energy of the system in the dipolar phase is negative. 
We conclude that the dipolar impurity state, when it exists, is stable with respect to the 
zero-energy non-dipolar state. 

Thus, provided aioA z 1 in each case, the lowest-energy solution arising from the 
H a r t ~ e  Hamiltonian yields three self-consistent solutions for the impurity dipole moment, 
corresponding to the three eigenvalues of G. For the large majority of site configurations, the 
three eigenvalues of g are distinct The ground-state solution then conresponds to the largest 
eigenvalue, A,,, since this gives the lowest energy (and also the largest impurity dipole 
moment). The impurity dipole moment is also of well defined magnitude and orientation. 
If, on the other hand, the largest eigenvalue is doubly or triply degenerate then, although 
the magnitude of p; remains well defined, its orientation is to some extent arbitrary. 

For a given configuration of sites, therefore, if cu~oh, c 1 then the impurity atom 
is non-dipolar, and if ai0hma. t 1 then the impurity has a dipole moment of magnitude 
given by (2.18) (with A = Amx) and usually of well defined orientation. Note that this 
result follows from the Hartree Hamiltonian for the model impurity system, with no further 
approximations introduced. In I, the dipolar EI phase predicted by the Hartree approximation 
was found to be.in gbod agreement with the results of the pairing theory for a crystalline 
system, and we may therefore have confidence in the present results. In a fluid or disordered 
solid, however, we must go further and consider the ensemble of possible site configurations. 
Because of the assumed isotmpy of the system, the ensemble average of is zero, since 
for every configuration that yields a particular dipole moment, there is an equally weighted 
configuration that yields the opposite dipole moment The average magnitude of pi may, 
however, be non-zero. 

Different site configurations are weighted, via the Boltzmann factor, by the potential 
energy of the configuration. This consists of two parts: the dipolar interaction energy arising 
from the electronic structure that we are calculating, and some reference potential (assumed 
to be spherically symmetric) that includes all other interactions. The dipolar interaction 
energy is non-zero only in the E1 phase, where the impurity and its surrounding solvent 
atoms have non-zero dipole moments. We will, however, neglect entirely this contribution 
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to the potential energy: this can be shown to be consistent with the later restriction to linear 
theories. We thus assume different configurations to be weighted solely by the reference 
potential, which is of course independent of the magnitude of the dipole moments we wish 
to evaluate. 

The problem is therefore to calculate the ensemble average of the magnitude of the 
impurity dipole moment, with different configurations weighted by the chosen reference 
potential. If f(Amax) denotes the distribution function of A, arising from the ensemble 
of site configurations, then the average magnitude of the impurity dipole moment can be 
written 

M D Winn and D E Logan 

(2.20) 

Here, the lower limit of the integration corresponds to the limit of acceptability of the 
dipolar solution (2.18). If f(Amar) is zero for all Amax above I/a;o, then clearly (Ipi I )  = 0 
and we have a normal insulating phase. Conversely, if f (Amar) is non-zero for some Am= 
above t/a;o, i.e. some configurations give rise to an impurity dipole moment, then we have 
a dipolar EI phase. 

To evaluate (2.20). we require a knowledge of f(A,). This is clearly a formidable 
problem, and so we here adopt an alternative approximate approach. Instead of considering 
the eigenvalues of G? for the ensemble of configurations, we consider the eigenvalues of the 
ensemble average of 8: 

(2.21) 

where I is the identity matrix. This is clearly a mean field approximation. G is isotropic, and 
trivially possesses a triply degenerate eigenvalue equal to G. The mean field approximation 
thus corresponds to replacing in (2.18) and (2.19) the eigenvalues of 8, namely A, by the 
eigenvalue of G, namely G. Because of the triple degeneracy of the eigenvalue of G, the 
orientation of the predicted dipole moment pi is completely arbitrary. 

The mean field approximation is equivalent to assuming f(A,) = - G), where 
S ( x )  is the Dirac delta function. Since G is likely to be less than a typical value of A,- 
(the largest of the three eigenvalues of 8). we expect the mean field approximation to 
underestimate the occurrence of a dipolar €1 phase. Furthermore, fluctuations in A., are 
neglected, again leading to an underestimation of the Occurrence of an EI phase, since when 
a normal insulating phase is predicted by the mean field theory, there might in fact be a 
fraction of configurations that give rise to an impurity dipole moment. Conversely, when 
an El phase is predicted, the strength of the impurity dipole moment may be overestimated, 
since there might be a fraction of configurations that does not give rise to an impurity 
dipole moment. The dipolar El phase is thus likely to Occur over a wider range of system 
parameters, and the impurity dipole moment in the E1 phase evolve more gradually, than 
the mean field theory would predict. 

G = GI = (5;) 

Explicitly, the mean field solution is as follows. When aioG < I ,  the only solution is 

pi = o  w; = o  (2.22) 

i.e. the zeru-energy non-dipolar state of the impurity. When uioG > I ,  however, there is 
also a dipolar solution 

(2.23) 
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and this solution is energetically stable with respect to the non-dipolar solution. The central 
quantity is clearly the average reaction field factor, G, which depends solely on the properties 
of the solvent. In particular, G increases with both solvent density and solvent polarizability. 

The mean field approximation is equivalent to replacing $7 in (2.14) by its ensemble 
average G =,GI. With this replacement, (2.14) provides a self-consistency relation for pi 
in terms of the impurity parameters, cui0 and M i ,  and the average reaction field factor, G. 
This relation is of precisely the form obtained by Logan in his mean field theory of the 
dipolar El phase of matrix-bound impurities (see (3.15) of [2] in the limit f l +  00). where 
continuum dielectric theory was used to obtain an expression for G in terms of the density 
and polarizability of the solvent atoms. In conmt ,  from (2.13) and (2.21), we have here a 
prescription for a microscopic calculation of G. 

2 3 .  Linear theories 

To use the mean field results, (2.22) and (2.23), we need to evaluate the average reaction 
field factor G. In this subsection, we consider the microscopic calculation of G in more 
detail, and for a particular class of approximate theories. From (2.13) and (2.21), we write 

Here, p = N/ V is the number density of solvent sites, and g&, 2 . .  . s) is the normalized 
s-particle distribution function appropriate to the reference potential, which characterizes the 
ensemble average. The term G&, 2 . .  . s) stands for the sum of all terms contributing to G 
that involve exactly s sites. Each term on the right-hand side of (2.24) can be represented in 
terms of composite graphs consisting of s points and two types of connectors. First, there 
may be connectors from the gg(i, 2 . .  .s) function, representing spatial correlations arising 
from the average over the reference system. ~ Second, there is a continuous and directed 
chain of Tjt bonds, representing a term in Gs(i ,  2 . .  .s). The chain starts and ends at the 
impurity site i ,  touches each of the s points at least once. but does not visit i en route. A 
factor of or0 is associated with each interior stage of the chain, where a stage is defined as a 
contact of the T-chain with a point, and a factor of unity is associated with each end stage 
at i .  The impurity site i is not integrated over and is termed a root point (Rp). All solvent 
sites are integrated over and are field points (w); with each FP is associated a factor of p. 

The graphs contributing to G may be analysed using the graph-theoretical methods 
introduced by Wertheim in his work [31] on non-polar polarizable fluids. The reader is 
referred to WerIheim’s work for details of these methods, and here we merely summarize 
the procedure. The graphs contributing to G are renormalized by the elimination of 2- 
articulation points (2-AP) (we use the modified terminology of [32]), and the consequent 
replacement of (YO by a renormalized solvent polarizability, (Y, at each interior stage. G 
is then the sum of all composite graphs with ~p i, at least one FP with each of which is 
associated a factor of p .  connectors from gs(i, 2 . .  . s), a single T-bond chain beginning and 
ending at i for which i is not an interior stage, no ZAP, and a factor of (Y associated with 
each interior stage. The renormalized solvent polarizability is itself given by an expansion 
in renormalized (free of 2-AP) composite graphs, for which all points are solvent sites. More 
specifically, a1 is given by precisely the prescription given above for G, with the impomnt 
difference that the RP is a solvent site and may be an interior stage of the T-bond chain. 

To make further progress in the analysis of 0, we must develop suitable approximate 
theories, by retaining only a subset of the most relevant graphs. Stabilization of the impurity 
dipole by the solvent is likely to be favoured by high solvent densities, and so we must 
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retain graphs in all powers of p. The subset of graphs that appear with the nth power of 
p. contains graphs in a", a"+', etc. Since we have supposed the solvent polarizability to 
be low, a is also likely to be low, and the dominant contribution is likely to be from the 
graphs in a". We therefore make the approximation of neglecting all graphs except those 
for which a appears to the same power as p. This, in fact, corresponds to assuming a linear 
or single-site theory, for which only one stage is associated with each solvent site. The 
graphs contributing to G now consist of a T-bond chain from i to i, which touches each 
FP once only, with additional connectors arising from the reference s-particle distribution 
function, &(i, 2 .  . .s). Different linear theories correspond to different approximations for 
the latter connectors. 

Within a linear theory, a1 is given by a01 plus the sum of all renormalized composite 
graphs with one, two . . . 'petals'. Each petal consists of a T-bond chain that begins and 
ends at the RP, touching each m once only, and with additional connectors arising ftom 
&(i, 2 . . . s ) .  A simple comparison of the graphs involved shows that for linear theories 
(and only for linear theories), and considered as a function of the gs( i ,  2 .  . .s) connectors, 
a is related to G by 
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a = a o ( 1  - Gao)-l (2.25) 

where G = C(a)  is a function of the renormalized solvent polarizability, but is independent 
of the impurity parameters. One route to the calculation of G is thus via available 
microscopic theories of a. This connection will be developed further in a subsequent 
paper, in which we will consider some explicit examples. 

In addition to the work of Wertheim [31] mentioned above, there have also been 
studies of the renormalized polarizability of non-polar polarizable fluids within the so-called 
fluctuating-polarizability model [33-351. For the cases considered, the results obtained are 
identical to those of Wertheim. A particularly useful result was obtained by Pratt [33] who 
showed that, for linear theories, the renormalized polarizability is given by 

(2.26) 

where ,Cl = (kT)-' and ( U / N ) i  is the dipolar part of the internal energy per particle of a 
fluid composed of non-polarizable molecules with permanent dipole moment @ = (3u/,Cl)'I2. 
Comparing (2.25) and (2.26). we identify 

G = - ( 2 / 3 ~ ) ( , C l U / N ) p  (2.27) 

Many years ago, Onsager [36] discussed the lower bound of the electrostatic energy of 
a system of particles, each of which possesses an impenetrable spherical core of diameter 
U .  For a system of dipolar non-polarizable particles, his results translate into the fact that 
the quantity ( U / N ) p  has a lower bound equal to -4j?/03. Using (2.27). and relating @ to 
the renormalized polarizability a as above, G consequently satisfies the inequality 

G < 8/u3. ( 2 2 8 )  

In applying this inequality to the present situation, we have assumed that the solute atom 
and all solvent atoms have identical hard spherical cores of diameter U .  When this is true, 
the saturation of G clearly implies an upper limit to the magnitude of the impurity dipole 
moment (see (2.23)). Indeed, if a i ~ u - ~  < 1/8 then no impurity dipole is possible within a 
linear theory. 
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As explained above, within linear theories the p and a dependence of G enters solely 
via the combination pa  (except for the weaker p dependence of the manyparticle reference 
distribution functions). To lowest order in pa,  G is given by 

G = p a  dRgz(R) fTr(T(R) .T(-R)) + O[(pcu)21 J 
(2.29) 

where g z ( R )  is the pair distribution function appropriate to the reference potential. 

3. Dynamic response 

3.1. Normal insulating phase 

In this section, we consider the dynamic response of the model system to an oscillatory 
electric field. In particular, we are interested in how the transition to a dipolar El phase, 
discussed above, is reflected in the optical absorption of the system. We consider first 
the general model system described in section 2.1 in the normal insulating regime, turning 
afterwards to the example of an impurity system. In the following subsection, we examine 
the dynamic response of the impurity system in the €1 phase. 

We know from linear response theory that the dipole moment induced on any atom i, 
by an oscillatory local electric field, &(U),  is given to linear order in the local field by 

/ do )  = aiO(owi(0) (3.1) 

where the frequency-dependent polarizability, aio(o), (assumed isotropic) is expressed in 
terms of the energy levels of the atom. For the model system of section 2.1, ajo(w) is of 
the form 

(3.2) 

where ai0 is the static polarizability of site i, and q is a positive infinitesimal. At T = 0, 
ai0 is given by (2.9). 

For an isolated atom, the local field, Ei(o), is simply the externally applied field, 
Pxt(o), and the optical absorption coefficient is proportional to oIm[ai&)l. The 
absorption spectrum thus consists of a delta function at the atomic transition frequency, 
A ~ i / f i .  In the condensed phase, and for a given site centre-of-mass configuration, the local 
field is 

aio(co) = ai0 [I  - A Z ( o  + iq)*/Ac?]-' 

&(U) Eexr(~)  + CTij * pj(o) (3.3) 
i 

where &(o) is the dipole moment induced on site j ,  directly and indirectly, by the 
external field. Taken together, (3.1) and (3.3) are formally equivalent to the Yvon-Kirkwood 
equations (2.10). with the static polarizability replaced by the dynamic polarizability, aio(w). 
With this replacement, the dynamic response of the condensed system can be obtained from 
the solution of the Yvon-Kirkwood equations. 

Of particular interest is the optical absorption coefficient, which may be related to 
the imaginary part of a susceptibility function that includes both sitediagonal and off- 
diagonal components (see, for example, [37]). The sitediagonal component is, in fact, 
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the renormalized dynamic polarizability, ai(o). Because of the isomorphism with the 
static Yvon-Kirkwood equations mentioned above, ai(w) is related to the bare dynamic 
polarizability, aio(o), in precisely the way that the renormalized static polarizability, cui, 
is related to the bare static polarizability, aio. Thus, from theories of the renormalized 
static polarizability we may obtain the sitediagonal contribution to the absorption spectrum 
by simply replacing ai0 with ai~(o). The site-diagonal component is sufficient to obtain 
the frequency ranges in which absorption takes place, but the off-diagonal component is 
required in addition to obtain the correct lineshape. Here, we consider solely the former. 

For a neat liquid, the renormalized dynamic polarizability was studied within the MSA by 
H0ye and Olaussen [38], and within a Pad6 approximant theory by Chandler and co-workers 
[30]. Both groups found the imaginary part of the renormalized dynamic polarizability to be 
non-zero over a range of positive frequencies, the delta function absorption of the isolated 
atom being broadened into an absorption band. The states that give rise to the absorption 
band may be identified as Frenkel excitons [29]. As discussed earlier and in detail in I, 
a transition to the Frenkel El phase occurs when the lowestenergy exciton state becomes 
degenerate with the ground state. In the present context, a transition occurs when the lower 
edge of the absorption band associated with the imaginary part of the renormalized dynamic 
polarizability reaches zero frequency. As mentioned in section 2.1, this is the criterion used 
in the work of Logan and Edwards [13]. 

For the impurity system of section 2.2, we expect the solvent atoms to give rise to 
an absorption band in the same manner as the neat liquid considered above. In general, 
the impurity atom gives rise to an absorption peak either inside or outside the absorption 
band of the solvent, but, for the systems that we are interested in, the impurity absorbs 
at a frequency or range of frequencies well below the solvent band. To calculate the 
impurity absorption, we require the renormalized dynamic polarizability of the impurity 
[30,391. Equation (2.25). which for linear theories relates the renormalized polarizability of 
a solvent atom to the average reaction field factor, also holds for the impurity atom in the 
normal insulating regime. In the dynamic case, with ai0 replaced by aio(o), this relation is 

(3.4) 

where G(o) 3 G[a(o)] is a function of the renormalized dynamic solvent polarizability. 
For frequencies outside the solvent absorption band, where we have assumed the 

impurity absorption to occur, a(o) and hence G(w) is real. Therefore, with aio(w) given by 
(3.2). it is clear that Im[cu;(o)] is a delta function at a frequency which is a zero of [30,39] 

(3.5) 

Thus, the impurity has a delta function absorption spectrum at a frequency which is 
redshifted from Aci/h as the solvent density, and hence G(o),  is increased from zero 
[30,39]. 

There is a transition to the EI phase, and consequently the formation of a dipolar impurity 
atom, when the state giving rise to this absorption line becomes degenerate with the ground 
state, i.e. when the frequency of the impurity lime becomes zero. Remembering that 
(~(0) = (Y at o = 0, the condition that o = 0 is a zero of (3.5) is 

Gaia = 1 (3.6) 

where G G [ a ] .  This is precisely the condition for the transition to an EI phase found 
in section 22. We have thus derived the condition for an EI transition in an impurity 
system, within a linear mean field theory, in two distinct ways. In section 2.2, we found the 
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a;(o) = a d o )  [ l  - c(o)aio(o)l-' 

As: [ I  - G(o)(Y~o] - hZo2. 
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condition under which the Hartree Hamiltonian would support a dipolar solution. In this 
section, and in the spirit of the exciton theory of I, we have found the condition under which 
the lowest-lying excited state becomes degenerate with the ground state. It is gratifying that 
both approaches yield the same answer. 

Experimentally, it is found that the absorption line of a dilute impurity in a liquid or 
glassy solvent is inhomogeneously broadened by the distribution of solvent environments 
(see e.g. [40]), and there have recently been many attempts to model this broadening 
theoretically [37,41-46]. It is straightfoward to show that the delta function absorption 
implied by (3.4) is a direct result of the use of a linear theory. Within a non-linear theory, a 
graphical analysis shows that u;(w) is given again by an equation of the form of (3.4), but 
with G(o) replaced by a quantity that is a function of ui(w) as well as a@). Equation (3.4) 
thus becomes a self-consistency equation foro;(o), which may have complex solutions over 
a range of frequencies, implying an absorption band per se. The need for a non-linear theory 
to obtain a broadened impurity line has also been pointed out by Chen and Stratt [37,461. 
Clearly, if a particular system exhibits significant inhomogeneous broadening, then a h e a r  
theory is inappropriate, and the above description of the E1 instability must be improved. 

In section 2.2, we showed that for a given site configuration the impurity is dipolar if 
~ o A -  > I ,  where Amr is the largest eigenvalue of 9. If one goes through the above 
argument for the impurity absorption line for a given site configuration, then this criterion 
for the EI phase is again recovered. The equivalence of these two routes is therefore not 
an artifact of the linear mean field theory. Consideration of the ensemble of possible site 
configurations then leads to a distribution of impurity lines and consequently a distribution 
of transition criteria For the special case of a linear mean field theory, we recover the 
scenario described above. 

3.2. The El phase 

Within the E1 phase, as discussed in section 2, it is essential to consider the non-linear 
response of the impurity to the local field, and thus (3.1) is inappropriate for the impurity. 
One can, however, consider the linear response of the impurity to the change in the local 
field, AEi(o),  resultant upon the application of an extemal field. The change in the dipole 
moment, Ap;(o) ,  induced on the impurity is given to linear order in AEi(o) by 

(3.7) 

where aZ(o) (in general anisotropic) is a modified dynamic polarizability appropriate to 
the impurity in the dipolar El phase. The latter is given from linear response theory in terms 
of the Hartree eigenstates of the impurity. In the E1 phase, these differ from the States of 
the sp-’ basis, and thus a$(o) differs from the gas phase quantity, aio(o). 

As discussed in section 2.2, we assume that the solvent atoms respond linearly to the 
local field, even in the EI phase. This is equivalent to assuming that the bare dynamic 
polarizability of a solvent atom is unchanged in the El phase. Thus, for all solvent atoms 
j ,  we have 

A p i ( ~ )  = &(w) * AE,(w) 

Apj(w) = (Y,(o)AE~(w). (3.8) 

The change in the local field at the impurity site, AI$(@), is given by the extemal field 
plus the change in the local field arising from the change &the solvent dipole moments 

AE;(o)  = Eext(o) +ET, ,  . Apj(0)  
i 

(3.9) 
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A similar equation holds for all solvent sites. 
Equations (3.7H3.9) are formally equivalent to the Yvon-Kirkwood equations (2.10). 

and describe the linear response of the impurity, Api(w), arising directly and indirectly 
from the application of the extemal field ECK*(w). With this equivalence, the dynamic 
response of the system in the El phase can be obtained following the procedure of the 
previous subsection. The sole, but important, difference is that the impurity possesses a 
modified dynamic polarizability, agfo), rather than the gas phase polarizability, a&o), 
reflecting the fact that the impurity is in a dipolar state. 

Following the procedure of section 3.1, the primary contribution to the impurity 
absorption comes from the imaginary part of the renormalized modified dynamic 
polarizability, c$'(o), which, within a linear theory, is obtained from 
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(3.10) 

With the assumptions we have made above about the solvent, G(o) G[a(o)l  is the same 
function that appears in (3.4) for the normal insulating phase. The position of the impurity 
absorption line is determined by a pole of the right-hand side of (3. lo), to locate which we 
need a form for aE(o). 

The term a;(@) has a set of mutually orthogonal principal axes, one of which lies 
parallel to the dipole moment of the EI phase. We denote the latter by az,,(o), and the two 
transverse components by azL(o). From (3.10). we obtain the corresponding components, 
a;/(@) andaz(o) ,  of a,"'(o). In fact, only a$(@) is physically significant. It was shown in 
section 2.2 that the dipole moment predicted by the mean field theory has, in the absence of 
an external field, an arbitrary orientation. In the presence of an infinitesimal field, however, 
the dipole moment lies parallel to that field. Consequently, in switching on the external field 
Een(o) from an infinitesimal magnitude, keeping its orientation ked, the dipole moment 
necessarily lies parallel to Ee"(o), and hence only a$(w) can be probed. If one calculates 
the transverse components, one finds that &(O) is infinite in the El phase, reflecting the 
infinite susceptibility of the impurity dipole with respect to changing its orientation to that 
of the field. In the following, we therefore only consider the parallel component, a$(o). 

The solution of the Hamee Hamiltonian (2.1) in the absence of an external field yields 
for the impurity atom four eigenenergies, WI-W~, and four corresponding eigenfunctions, 
given in terms of the local field, E,. In section 2, we dealt solely with the lowest-energy 
state, the eigenenergy of which is given by (2.7). and the corresponding eigenfunction was 
used to determine the impurity dipole moment (2.8). To calculate the modified impurity 
polarizability, we must now consider virtual transitions between all four solutions. In terms 
of these solutions, linear response theory leads to the following expression for the modified 
dynamic polarizability of the impurity: 

Here, 1 is the lowest-energy eigenstate, and f runs over the remaining three states. The 
term M I ,  is the transition dipole moment vector between states I and f ,  and is determined 
from the eigenfunctions of these states. In the normal insulating phase, states 1-4 are simply 
the s orbital and three p-orbitals of the basis, and (3.1 I )  reduces to (3.2) with (2.9). 

Equation (3.1 I )  gives a;(@) in terms of the eigenenergies and eigenfunctions of the 
impurity, and hence in terms of the local field, Et. The mean field theory of section 2.2 
replaces Ei by Gpi. where G = G[a] is a function of the renormalized static polarizability 



Frenkel €1 phase of impuriry system 3117 

of the solvent, and p; is given by (2.23). We thus write cyE(w) in terms of G, from which 
it can be shown that 

(3.12) 

It C a n  be seen that in the El phase (a;oC > 1). cr&(O) is reduced with respect to the gas 
phase value U;O. Finally, from (3.10) and (3.12) it follows that 

(3.13) 
Equation (3.13) is the desired expression for the parallel component of the renormalized 

modified polarizability of the impurity in terms of the average reaction field factor and the 
parameters of the impurity atom. The term a$(@) has a pole at a frequency which is a 
zero of 

A E ~ [ ( Y ~ G ~  - G(w)/G] -h2w2 (3.14) 
and this is the frequency of the impurity absorption line in the EI phase. We see that (3.6) 
is recovered as the condition that w = 0 is a zero of (3.14). i.e. (3.6) is also the criterion 
for the transition when the latter is approached from the EI phase. For a& > 1. i.e. within 
the E1 phase, the absorption ,line moves again to positive frequencies. 

We now summarize the behaviour of the lowest excited state of the system, which is 
responsible for the impurity absorption line, as the system is driven through the El transition. 
As the transition is approached from the normal insulating phase, the excited state that gives 
rise to the absorption line is reduced in energy towards the ground state. There is, however, 
no mixing between them, and the ground state is pure s-like. At the transition, the excited 
state becomes degenerate with the ground state, there is mixing, and a new sp-hybridized 
ground state is formed. As the system enters the EI phase, there is continued mixing bemeen 
the new ground state and the lowest excited state, pushing these states apart in energy and 
increasing the ground-state dipole moment. 

These changes are reflected in the fquency of the impurity absorption line, as 
determined by equations (3.5) and (3.14) and shown schematically in figure 1. Initially, 
the line is redshifted from the transition frequency, A q / h ,  of the isolated atom. Over a 
relatively narrow range of solvent density about the transition density, the line drops to 
zero frequency, and then moves again to positive frequencies. For very high densities, the 
line is blue-shifted from the isolated atom frequency, and tends towards the value AciaioG 
representing a transition from the lowest-energy to the highest-energy Hartree eigenstate 
of the impurity. Also shown in figure 1 is the bottom of the absorption band associated 
with the solvent. The solvent band broadens with increasing solvent density, and at a high 
density the impurity line may merge into the band. 

The behaviour of the excited state associated with the impurity is also reflected in the 
static dielectric susceptibility of the impurity to the applied field. We expect the dominant 
contribution to come from the site-diagonal part. From (3.4) with w = 0, we have 

U; =nio(l - Ga;o)-' G U ~ O  < 1. (3.15) 
Clearly, the susceptibility diverges with a mean field exponent of one as the transition 

'U;; = E(UiOG 1 2 2  - l)-l CUjO > 1. (3.16) 

Thus, the susceptibility also diverges with a mean field exponent of 1 as the transition 
is approached from the EI phase. This divergence of the static susceptibility results from 
the degeneracy of the ground and first excited states at the transition. Equations (3.15) 
and (3.16) have precisely the forms found by Logan [2 ] .  

1 
cujoa(o) El = - [ 1 - A Z ( @  + iq)2/(A~i~i~C)2]- '  . a;0G3 

aE;(w) = [&G3 - h2(@ + iq)'G/Aef - G(w)]-' .  

is approached from the normal insulating phase. Conversely, from (3.13): 
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Figure 1. Schematic illustration of ihe variation 
with solvent density of the impurity absorption 
line (full curve). A q / h  (Asp)  is the gas-phase 
transition frequency of the impurity (solvent), and 
pr is the density of the transition to a dipolar el 
phase. Also shown (broken curve) is the lower edge 
of the solvent absorption band. 
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4. Summary and discussion 

In this paper, we have extended the Hartree approximation introduced in I to the case 
of spatially disordered systems. In particular, we have studied the case of an impurity at 
infinite dilution in a solvent, a situation relevant to several experimental systems. Taking into 
account the ensemble of site configurations via a mean field approximation, we obtained 
a self-consistency equation for the dipole moment of the impurity atom in terms of the 
average reaction field factor. G, non-zero solutions to which indicate the occurrence of a 
dipolar Frenkel EI phase. This self-consistency equation has precisely the form obtained 
by Logan 121, but in contrast to the continuum dielectric theory employed by Logan, the 
present derivation allows a microscopic calculation of G. 

In section 3, we examined the linear response of the model system to an extemal 
oscillating electric field, and located the lowest excited state associated with the impurity. 
The transition to a dipolar El phase, as predicted by the W e e  approach, was found to 
coincide with the impurity excited state becoming degenerate with the ground state. We thus 
make contact with the viewpoint of the exciton theory of I, by asserting that the transition 
is driven by the admixture of the excited state into the ground state, consequent upon the 
latter becoming degenerate with the ground state. 

We now discuss how the picture of the dipolar Frenkel El phase developed in this paper 
would be reflected experimentally. The evolution of the impurity excited state, as described 
in section 3, is reflected in the frequency of the impurity absorption line. This would, if 
experimentally feasible, provide the most direct method of observing the transition to an 
El phase, since it shows explicitly the degeneracy with the ground state at the transition of 
a formerly excited state. In practice, the observation of this phenomenon is more difficult 
because of inhomogeneous broadening of the impurity line. The transition, when there is 
broadening, occurs when the lower edge of the impurity band becomes degenerate with the 
ground state, and the location of a lower band edge is necessarily more difficult. Despite 
this, the variation with solvent density of the maximum of the impurity band should be 
clearly non-monotonic, decreasing (increasing) with increasing density in the normal (EI) 
phase, as shown in figure 1. 

Associated with the behaviour of the impurity excited state is the divergence of the static 
dielectric susceptibility of the impurity (see section 3.2). and hence the static dielectric 
constant of the sample, at the transition. Following the discussion of Logan [2], this 
divergence should, in the majority of cases, occur over an observable range. 
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Although not explicitly dealt with in the present paper, magnetic resonance experiments 
provide another probe of the dipolar E1 phase. As the system undergoes a transition from 
a normal insulating phase to an EI phase, the impurity changes from a pure s state to an 
sp-hybridized state (see above). Consequently, the electron density at the impurity nucleus 
is reduced in the EI phase, and this will be reflected in a reduced hypertine interaction 
between the electron and nucleus. (We note that the double excitation terms of the model 
Hamiltonian in fact mix some p character into the ground state for all non-zero densities 
(see I). This effect is neglected in the Hamee approximation, but is small in comparison 
with the changes associated with the E1 transition.) The observation in ESR experiments of a 
reduction in the hyperfine interaction was, in fact, what prompted Chenier and co-workers 
[3] to speculate on the formation of dipolar states of Cu, Ag and Au in alkali halide matrices. 
For the alkali metals in many amine and ether solvents, ESR experiments indicate an electron 
density at the alkali nucleus intermediate between that of the gas phase atom and that of 
the fully ionized atom. This is usually taken to indicate an s state, which is more diffuse 
than that of the gas phase atom [47,48], but the formation of a dipolar state is a fiuther 
possibility. We discuss the situation in alkali metal/amine systems further in a following 
paper. 

In this paper, we have analysed the behaviour of the dipolar E1 phase that occurs in the 
model system introduced in I. but we must of course bear in mind the limitations of the 
model. A number of these were discussed in 1, to which the reader is referred, and here we 
mention only a few specific to impurity systems. 

In some systems, most notably alkali metals at low concentration in liquid ammonia, the 
valence electron of the impurity dissociates completely from the impurity, occupying a cavity 
in the solvent The solvated electron is then a species distinct 6om the solvated impurity 
ion. The tight-binding description we have employed, with basis orbitals associated with 
atomic sites, is clearly incapable of modelling such a possibility. Less drastically, interaction 
with the solvent may cause the impurity excitation to be of larger radius than the Frenkel 
excitation we have assumed. 

Further, we have only considered a single impurity atom. As the concentration of 
the impurity species is increased, however, interactions between different impurity atoms 
become significant. With the present model Hamiltonian, the principal effect is likely to 
be a broadening of the impurity excited state into a band, due to resonant transfer of the 
excitation between impurities. The transition to a Frenkel EI phase, with the formation of 
significant dipole moments on all impurity sites, occurs when the lower edge of the impurity 
band becomes degenerate with the ground state. As discussed in I, however, a number of 
terms were neglected in constructing the model Hamiltonian, of which the oneelectron 
transfer matrix elements, which allow electrons to hop between sites, are expected to be the 
most significant. Transfer matrix elements connecting different impurity sites will, as the 
impurity concentration increases, caux the Frenkel El phase to evolve into a Mott-Wannier 
El phase, followed by a metallic phase via a Mott unbinding transition [49]. 
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